In the mathematics field of complex analysis, a branch point of a multivalued function is a point such that if the function is -valued (has values) at that point, all of its neighborhoods contain a point that has more than values. (page 6) Multi-valued functions are rigorously studied using , and the formal definition of branch points employs this concept.
Branch points fall into three broad categories: algebraic branch points, transcendental branch points, and logarithmic branch points. Algebraic branch points most commonly arise from functions in which there is an ambiguity in the extraction of a root, such as solving the equation for as a function of . Here the branch point is the origin, because the analytic continuation of any solution around a closed loop containing the origin will result in a different function: there is non-trivial monodromy. Despite the algebraic branch point, the function is well-defined as a multiple-valued function and, in an appropriate sense, is continuous at the origin. This is in contrast to transcendental and logarithmic branch points, that is, points at which a multiple-valued function has nontrivial monodromy and an essential singularity. In geometric function theory, unqualified use of the term branch point typically means the former more restrictive kind: the algebraic branch points. In other areas of complex analysis, the unqualified term may also refer to the more general branch points of transcendental type.
Let be the boundary of , taken with its positive orientation. The winding number of with respect to the point is a positive integer called the ramification index of . If the ramification index is greater than 1, then is called a ramification point of , and the corresponding critical value is called an (algebraic) branch point. Equivalently, is a ramification point if there exists a holomorphic function defined in a neighborhood of such that for integer .
Typically, one is not interested in itself, but in its inverse function. However, the inverse of a holomorphic function in the neighborhood of a ramification point does not properly exist, and so one is forced to define it in a multiple-valued sense as a global analytic function. It is common to abuse language and refer to a branch point of as a branch point of the global analytic function . More general definitions of branch points are possible for other kinds of multiple-valued global analytic functions, such as those that are defined implicitly. A unifying framework for dealing with such examples is supplied in the language of below. In particular, in this more general picture, poles of order greater than 1 can also be considered ramification points.
In terms of the inverse global analytic function , branch points are those points around which there is nontrivial monodromy. For example, the function has a ramification point at . The inverse function is the square root , which has a branch point at . Indeed, going around the closed loop , one starts at and . But after going around the loop to , one has . Thus there is monodromy around this loop enclosing the origin.
An example of a transcendental branch point is the origin for the multi-valued function
for some integer k > 1. Here the monodromy group for a circuit around the origin is finite. Analytic continuation around k full circuits brings the function back to the original.
If the monodromy group is infinite, that is, it is impossible to return to the original function element by analytic continuation along a curve with nonzero winding number about z0, then the point z0 is called a logarithmic branch point. This is so called because the typical example of this phenomenon is the branch point of the complex logarithm at the origin. Going once counterclockwise around a simple closed curve encircling the origin, the complex logarithm is incremented by 2 i. Encircling a loop with winding number w, the logarithm is incremented by 2 i w and the monodromy group is the infinite cyclic group .
Logarithmic branch points are special cases of transcendental branch points.
There is no corresponding notion of ramification for transcendental and logarithmic branch points since the associated covering Riemann surface cannot be analytically continued to a cover of the branch point itself. Such covers are therefore always unramified.
Branch cuts allow one to work with a collection of single-valued functions, "glued" together along the branch cut instead of a multivalued function. For example, to make the function
single-valued, one makes a branch cut along the interval 0, 1 on the real axis, connecting the two branch points of the function. The same idea can be applied to the function ; but in that case one has to perceive that the point at infinity is the appropriate 'other' branch point to connect to from 0, for example along the whole negative real axis.
The branch cut device may appear arbitrary (and it is); but it is very useful, for example in the theory of special functions. An invariant explanation of the branch phenomenon is developed in Riemann surface theory (of which it is historically the origin), and more generally in the ramification and monodromy theory of algebraic functions and differential equations.
The logarithm has a jump discontinuity of 2i when crossing the branch cut. The logarithm can be made continuous by gluing together Countable set many copies, called sheets, of the complex plane along the branch cut. On each sheet, the value of the log differs from its principal value by a multiple of 2i. These surfaces are glued to each other along the branch cut in the unique way to make the logarithm continuous. Each time the variable goes around the origin, the logarithm moves to a different branch.
is a function with a simple pole at z = a. Integrating over the location of the pole:
defines a function u( z) with a cut from −1 to 1. The branch cut can be moved around, since the integration line can be shifted without altering the value of the integral so long as the line does not pass across the point z.
For any point P ∈ X and Q = ƒ( P) ∈ Y, there are holomorphic local coordinates z for X near P and w for Y near Q in terms of which the function ƒ( z) is given by
If Y is just the Riemann sphere, and Q is in the finite part of Y, then there is no need to select special coordinates. The ramification index can be calculated explicitly from Cauchy's integral formula. Let γ be a simple rectifiable loop in X around P. The ramification index of ƒ at P is
Assume that ƒ is finite. For a point P ∈ X, the ramification index e P is defined as follows. Let Q = ƒ( P) and let t be a local parameter at P; that is, t is a regular function defined in a neighborhood of Q with t( Q) = 0 whose differential is nonzero. Pulling back t by ƒ defines a regular function on X. Then
|
|